skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Kevrekidis, PG"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available September 1, 2026
  2. Free, publicly-accessible full text available April 1, 2026
  3. Free, publicly-accessible full text available November 1, 2025
  4. In the work of Colliander et al. (2020) a minimal lattice model was constructed describing the transfer of energy to high frequencies in the defocusing nonlinear Schrödinger equation. In the present work, we present a systematic study of the coherent structures, both standing and traveling, that arise in the context of this model. We find that the nonlinearly dispersive nature of the model is responsible for standing waves in the form of discrete compactons. On the other hand, analysis of the dynamical features of the simplest nontrivial variant of the model, namely the dimer case, yields both solutions where the intensity is trapped in a single site and solutions where the intensity moves between the two sites, which suggests the possibility of moving excitations in larger lattices. Such excitations are also suggested by the dynamical evolution associated with modulational instability. Our numerical computations confirm this expectation, and we systematically construct such traveling states as exact solutions in lattices of varying size, as well as explore their stability. A remarkable feature of these traveling lattice waves is that they are of ‘‘antidark’’ type, i.e., they are mounted on top of a non-vanishing background. These studies shed light on the existence, stability and dynamics of such standing and traveling states in 1 + 1 dimensions, and pave the way for exploration of corresponding configurations in higher dimensions. 
    more » « less
  5. In the work of Colliander et al. (2020) a minimal lattice model was constructed describing the transfer of energy to high frequencies in the defocusing nonlinear Schrödinger equation. In the present work, we present a systematic study of the coherent structures, both standing and traveling, that arise in the context of this model. We find that the nonlinearly dispersive nature of the model is responsible for standing waves in the form of discrete compactons. On the other hand, analysis of the dynamical features of the simplest nontrivial variant of the model, namely the dimer case, yields both solutions where the intensity is trapped in a single site and solutions where the intensity moves between the two sites, which suggests the possibility of moving excitations in larger lattices. Such excitations are also suggested by the dynamical evolution associated with modulational instability. Our numerical computations confirm this expectation, and we systematically construct such traveling states as exact solutions in lattices of varying size, as well as explore their stability. A remarkable feature of these traveling lattice waves is that they are of ‘‘antidark’’ type, i.e., they are mounted on top of a non-vanishing background. These studies shed light on the existence, stability and dynamics of such standing and traveling states in 1 + 1 dimensions, and pave the way for exploration of corresponding configurations in higher dimensions. 
    more » « less
  6. Motivated by an exact mapping between equilibrium properties of a one-dimensional chain of quantum Ising spins in a transverse field (the transverse field Ising (TFI) model) and a two-dimensional classical array of particles in double-well potentials (the “ 4 model”) with weak inter-chain coupling, we explore connections between the driven variants of the two systems. We argue that coupling between the fundamen- tal topological solitary waves in the form of kinks between neighboring chains in the classical  4 system is the analog of the competing effect of the transverse field on spin flips in the quantum TFI model. As an example application, we mimic simplified measurement protocols in a closed quantum model system by studying the classical  phi 4 model subjected to periodic perturbations. This reveals memory/loss of mem- ory and coherence/decoherence regimes, whose quantum analogs are essential in annealing phenomena. In particular, we examine regimes where the topological excitations control the thermal equilibration following perturbations. This paves the way for further explorations of the analogy between lower-dimensional linear quantum and higher-dimensional classical nonlinear systems. 
    more » « less
  7. In the present work, we study coherent structures in a one-dimensional discrete nonlinear Schrodinger lattice in which the coupling between waveguides is periodically modulated. Numerical experiments with single-site initial conditions show that, depending on the power, the system exhibits two fundamentally different behaviors. At low power, initial conditions with intensity concentrated in a single site give rise to transport, with the energy moving unidirectionally along the lattice, whereas high power initial conditions yield stationary solutions. We explain these two behaviors, as well as the nature of the transition between the two regimes, by analyzing a simpler model where the couplings between waveguides are given by step functions. For the original model, we numerically construct both stationary and moving coherent structures, which are solutions reproducing themselves exactly after an integer multiple of the coupling period. For the stationary solutions, which are true periodic orbits, we use Floquet analysis to determine the parameter regime for which they are spectrally stable. Typically, the traveling solutions are characterized by having small-amplitude, oscillatory tails, although we identify a set of parameters for which these tails disappear. These parameters turn out to be independent of the lattice size, and our simulations suggest that for these parameters, numerically exact traveling solutions are stable. 
    more » « less